CUBESAT SOLAR PANELS

May15-12 Client: John Carr, NASA Advisor: Gary Tuttle

MEMBER CONTRIBUTIONS

Luke Dahlman - Team Leader

Organizes/conducts meetings, emails, & group documents

Antjuan Buffett-Team Intermediary

Acts as a link between members in order to try to bring about an agreement or reconciliation

<u>Tom Henry – Webmaster</u>

Designed and updates group website Gathers group work for public posting

Anh Ho, Dustin Pierce - Key Concept Holders

Helps group to understand their common objectives and assists in planning how to achieve these objectives

Ryan Bissett, Isaac Johns - Team Communicators

Writes group reports based on group's previous week's work

Gathers individual contributions

PRELIMINARY PROBLEM STATEMENT

Our group is tasked with designing and implementing a deployable and

retractable boom that fits inside a 1 cubic foot satellite used to deploy and

retract a solar cell array with a minimum area of 9ft².

PRELIMINARY DESIGNS-SCISSOR JACK

- Size Constraint
 - 1ft³ cube
 - 4-9ft² solar panels
- Scissor Design
 - Motor
 - 3 ft-lb
 - 2 phase motor deploy and retract
 - Stepper motor
 - Power Transmission
 - Screw drive

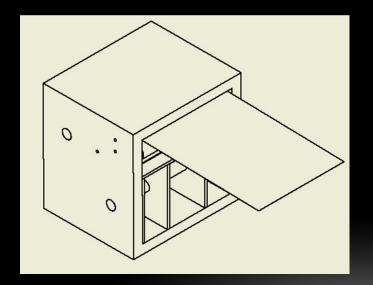
PROBLEM STATEMENT

Our group is tasked with designing and implementing a deployable and

retractable boom that fits inside a CubeSat (10cm x 10cm x 10cm) used to

deploy and retract a solar cell array with a minimum area of 4ft² using bendable

solar arrays.


PRELIMINARY DESIGNS-FAN

- One dual phase motor
- One servo motor
- Difficult to reach 9 ft² solar panels
- Gear Drive
 - At pivot point 360° rotation
 - One to unfold achieve more than 1 foot radius
- The Area of this method will never achieve 100% full of solar cells
 - 25mm bending radius
 - $A_{\text{cell,min}} = 1 \text{ cm x 1 cm}$ $A = \pi R^2$
- Solar Panel Calculation. $R = \frac{4ft^2}{\pi}$

PRELIMINARY DESIGN-TAPE MEASURE

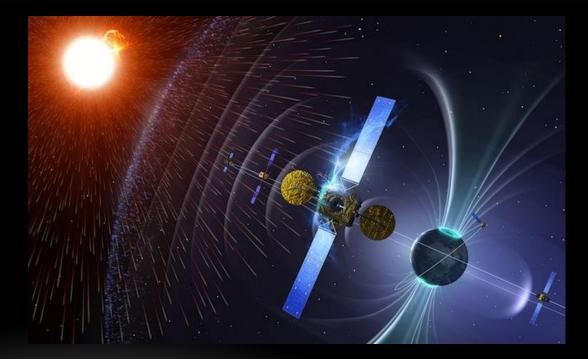
- Size Constraint
 - 1000cm³ cube-sat
 - 4-9ft² solar panels

- Measure tape technique
 - Motor
 - <100 oz-inch
 - Brushed motor
 - Single phase motor deploy
 - Continuous
 - Power Transmission
 - Spur Gears deploy
 - Retract spiral coil

FINAL DESIGN DECISION

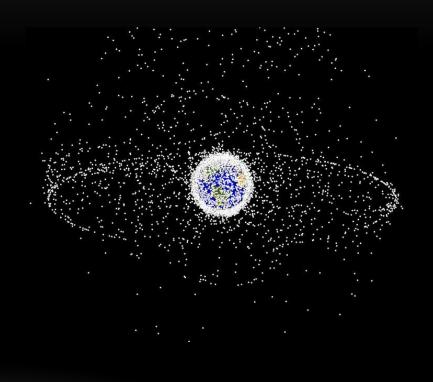
	Grading	Importance		
	1	Low		
	3	Medium		
	5	High		
Size Chart				
1	Only 1 design			
2	Multiple design			

Decision Making Pugh Matrix							
#	Design	# of Components	Size	Solar Area	Require Motor Torque	Prototype Cost	Final Grade
1	Fan	Low	1	Limited	Medium - High	Medium	15
2	Scissor	Medium	1	Neutral	Medium - High	Low	17
3	Таре	High	1&2	Neutral	Low	High	17
Our Final design were based on # of components at the beginning when the constraint of cube-sat is 1 ft ³ , but when							
the constraint were reduce by 1/9 of the regular size.							


FUNCTIONAL REQUIREMENTS

- Repeatable operation.
- Low power consumption.
- Structural rigidity when extended.
- Physical Limitations of Materials

- Receive and interpret the signal.
- Execute the command while monitoring boom tension.
- Latch at full extension.


NON-FUNCTIONAL REQUIREMENTS

- Temperature
- Radiation
- Elasticity
- Reliability/Lifetime
- Fixed components
- Weight
- Size

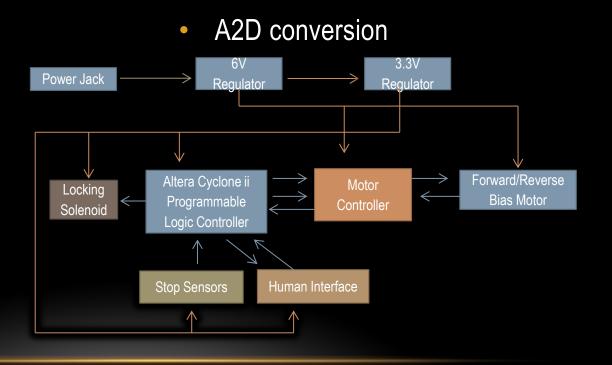
POTENTIAL RISKS

- In Low Earth Orbit (LEO), the primary risks are:
 - Temperature swings (-250F to +250F)
 - Radiation exposure
 - UV exposure
 - Extremely low pressure (Vacuum)
 - Near zero ease of access
 - High-velocity impacts from space debris

MARKET FOR CUBESATS

- Comparable Cost: \$10,000
- Purpose: Space Research
- Users
 - NASA, Client
 - Universities
 - Private Corporations

MATERIAL COSTS


Materials	Manufacture/Vendor	Part Number	Shipping Delays	Price
Bearing	Fastenal	474467	<week< td=""><td>1.75</td></week<>	1.75
Silicone Wheels	Ebay	Ebay	<week< td=""><td>21</td></week<>	21
Motor Driver	Pololu	VNH5019	<week< td=""><td>22</td></week<>	22
Gear Motor	Pololu	1577	<week< td=""><td>25</td></week<>	25
Solenoid	Bicron Electronics	SC0424L0625	Obtained	Free Sample
Spring	Small Parts	CF021-0025	<week< td=""><td>37.95</td></week<>	37.95

Total Cost without PLC: \$368.46

TECHNOLOGY PLATFORM

Hardware

- Atmel Rad-Hard PLC
- Motor
- Motor controller
- Relays
- Sensors
- Solar array

Software

VHDL

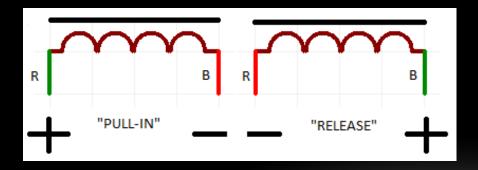
IMPLEMENTING PROTOTYPE

Each individual member researched & selected at least one component of the final design

For each component members were asked to create a test for functionality

Individual Components to be Tested		
Programmable	Microcontroller	
Logic Controller	Wheels	
Solenoids	Springs	
Motor	Таре	
Bearings		

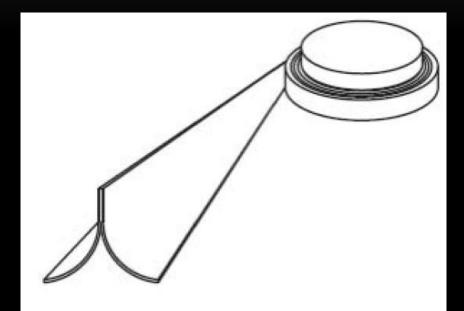
BEARINGS


- Prototype
 - Fastenal
 - 30-35% Greased
- Space Implementation
 - Timken
- Design, Structure and Testing
- Lubrication
 - Prototype
 - NASA test and usage

SOLENOIDS

General

- Used to latch boom
- Reduce power consumption
- Testing

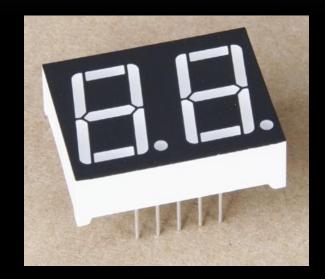


Magnetic Latching System

- Stays in position when voltage is removed.
 - Held out by spring.
 - Held in by magnet.
- Reverse voltage to move core in other direction.
- "Zero-Power-to-Hold"

TAPE MEASURE BOOM

- TRAC Boom
 - AFRL
 - Nanosail-D
- Elgoloy Stainless Steel
- Tape Measure Design
- Guide Plate
- Test


CONSTANT FORCE SPRING

- The spring we will use can be found <u>here</u>.
- This spring is:
 - Compact
 - Correctly tensioned
 - Low cost.
 - Spaceworthy
- For NASA's actual use
 - Vulcan Spring's products recommended

HUMAN TO MACHINE INTERFACE

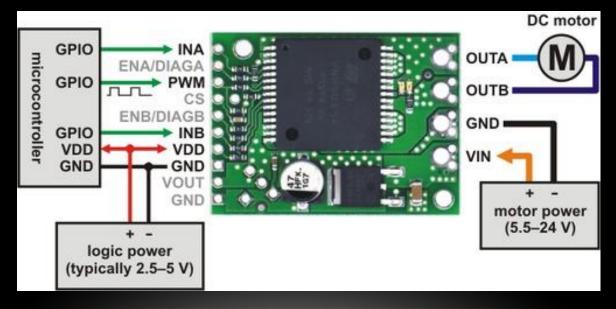
- Test Requirement
- Simplified Design
- Three Switches, Two Pole
 - Stop
 - Send Out
 - Send In
- Seven Segment Display

PROGRAMMABLE LOGIC CONTROLLER

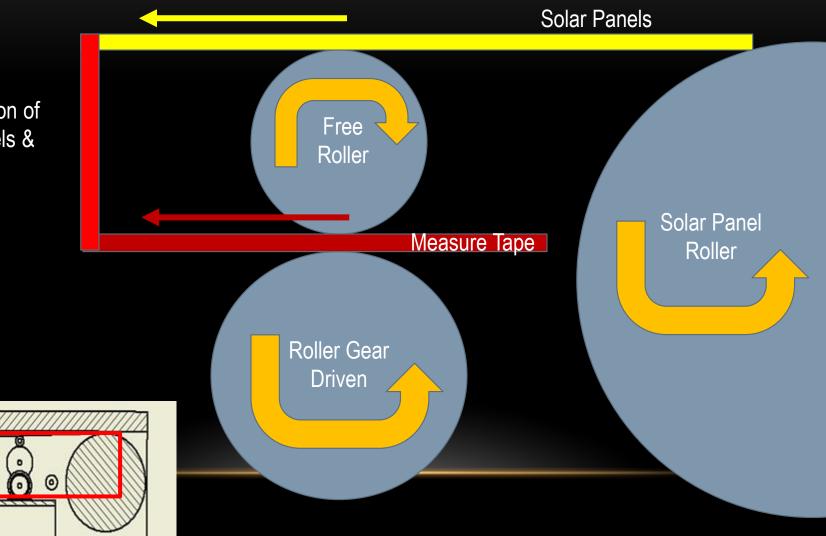
- ALTERA Cyclone II Test
 - Reprogrammable
 - Quartus II VHDL
- AT40KEL040
 - Rad Hard
 - 233 I/O Pins
 - ATMEL FPGA Designer®
- 3.3V Supply
- MIL STD 883 Method 1019

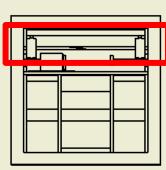
MOTOR

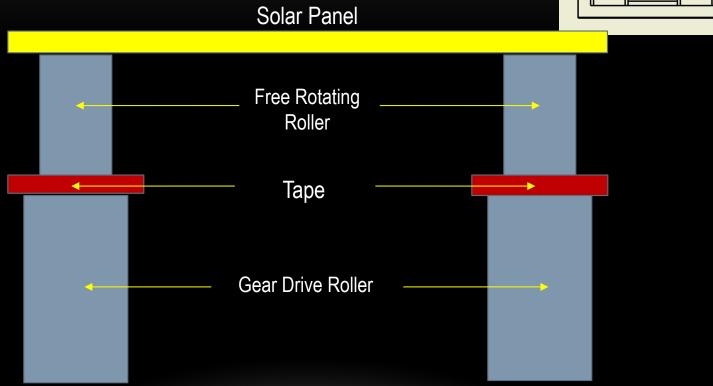
- Brushed DC motor with gearbox
- 57 rpm
- Small size
- 260 oz·in stall torque
- Terminal resistance and torque testing


MOTOR DRIVER

- Operates at 6V delivering continuous 12 A
- Various built in shutdowns and protections
- Compact Size
- Test current sense ability and motor indicator LEDs


ELECTRICAL INTERFACE


- 172:1 Gearmotor with 260 oz-in stall torque
- Motor Driver
- Atmel Microcontroller


ZOOM-IN SIDE VIEW

Connection of the Panels & tape

ZOOM-IN FRONT VIEW

PROJECT MILESTONES AND SCHEDULE

- Analog or Digital
- Circuit Outlines and Improvements
- Our Design Constraints were changed
- Redesigned our 1U CubeSat
- Final Circuit Completion
- Material Selections
- Draft Design Sent to NASA
- Bill Of Materials

10/05/2014 10/31/2014 11/01/2014 11/12/2014 11/26/2014 12/05/2014 12/06/2015 12/07/2014

PLAN FOR NEXT SEMESTER

- Material Ordering
- Circuit Assembled
- Complete Local testing
- Complete all Testing
- Ship prototype to NASA

12/19/2014 02/02/2015 02/06/2015 02/20/2015 02/20/2015